Biochemical mechanism on GABA accumulation during fruit development in tomato.

نویسندگان

  • Takashi Akihiro
  • Satoshi Koike
  • Ryoji Tani
  • Takehiro Tominaga
  • Shin Watanabe
  • Yoko Iijima
  • Koh Aoki
  • Daisuke Shibata
  • Hiroshi Ashihara
  • Chiaki Matsukura
  • Kazuhito Akama
  • Tatsuhito Fujimura
  • Hiroshi Ezura
چکیده

A large amount of gamma-aminobutyric acid (GABA) was found to accumulate in tomato (Solanum lycopersicum) fruits before the breaker stage. Shortly thereafter, GABA was rapidly catabolized after the breaker stage. We screened the GABA-rich tomato cultivar 'DG03-9' which did not show rapid GABA catabolism after the breaker stage. Although GABA hyperaccumulation and rapid catabolism in fruits is well known, the mechanisms are not clearly understood. In order to clarify these mechanisms, we performed comparative studies of 'Micro-Tom' and 'DG03-9' fruits for the analysis of gene expression levels, protein levels and enzymatic activity levels of GABA biosynthesis- and catabolism-related enzymes. During GABA accumulation, we found positive correlations among GABA contents and expression levels of SlGAD2 and SlGAD3. Both of these genes encode glutamate decarboxylase (GAD) which is a key enzyme of GABA biosynthesis. During GABA catabolism, we found a strong correlation between GABA contents and enzyme activity of alpha-ketoglutarate-dependent GABA transaminase (GABA-TK). The contents of glutamate and aspartate, which are synthesized from GABA and glutamate, respectively, increased with elevation of GABA-TK enzymatic activity. GABA-TK is the major GABA transaminase form in animals and appears to be a minor form in plants. In 'DG03-9' fruits, GAD enzymatic activity was prolonged until the ripening stage, and GABA-TK activity was significantly low. Taken together, our results suggest that GAD and GABA-TK play crucial roles in GABA accumulation and catabolism, respectively, in tomato fruits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How and why does tomato accumulate a large amount of GABA in the fruit?

Gamma-aminobutyric acid (GABA) has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) cycle via reactions catalyzed by...

متن کامل

A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition

Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic hom...

متن کامل

Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato (Solanum lycopersicum L.).

Tomatoes accumulate γ-aminobutyric acid (GABA) at high levels in the immature fruits. GABA is rapidly converted to succinate during fruit ripening through the activities of GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH). Although three genes encoding GABA-T and both pyruvate- and α-ketoglutarate-dependent GABA-T activities have been detected in tomato fruits, the me...

متن کامل

Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development.

Transcriptome profiling via cDNA microarray analysis identified 869 genes that are differentially expressed in developing tomato (Solanum lycopersicum) pericarp. Parallel phenotypic and targeted metabolite comparisons were employed to inform the expression analysis. Transcript accumulation in tomato fruit was observed to be extensively coordinated and often completely dependent on ethylene. Mut...

متن کامل

Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions

L-ascorbate (the reduced form of vitamin C) participates in diverse biological processes including pathogen defence mechanisms, and the modulation of plant growth and morphology, and also acts as an enzyme cofactor and redox status indicator. One of its chief biological functions is as an antioxidant. L-ascorbate intake has been implicated in the prevention/alleviation of varied human ailments ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 49 9  شماره 

صفحات  -

تاریخ انتشار 2008